MicroRNA-1 regulates the proliferation of vascular smooth muscle cells by targeting insulin-like growth factor 1.

نویسندگان

  • Kun Liu
  • Zhang Ying
  • Xia Qi
  • Ying Shi
  • Qiang Tang
چکیده

The aim of this study was to investigate the role of microRNAs (miRNAs or miRs) in vascular smooth muscle cell (VSMC) proliferation and to elucidate the underlying molecular mechanisms. In a previous study, using microarray analysis, differentially expressed miRNAs were identified in primary VSMCs isolated from the medial layer of the thoracic aorta obtained from spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats. Among others, miR-1 was identified to be downregulated in VSMCs from SHRs. Thus, in the present study, we focused on miR-1, the downregulation of which was confirmed by RT-qPCR and western blot analysis in VSMCs isolated from SHRs. We identified insulin-like growth factor 1 (IGF1) as a potential target gene of miR-1, and we subsequently validated IGF1 as a target gene of miR-1 by luciferase assay. The results revealed that the exogenous overexpression of miR-1 significantly suppressed the expression of IGF1. Additionally, we demonstrated that the downregulation of IGF1 by the introduction of miR-1 attenuated the proliferation of the VSMCs, suggesting that IGF1 is a target gene of miR-1 and that the effects of miR-1 are mediated through IGF1. In conclusion, the findings of our study demonstrate that miR-1 is significantly downregulated in VSMCs and that it is an important regulator of cell proliferation. Therefore, IGF1 may be involved in the regulation of VSMC proliferation by targeting miR-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-379 Inhibits Cell Proliferation, Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like Factor-1

PURPOSE MicroRNAs are small non-coding RNAs that play important roles in vascular smooth muscle cell (VSMC) function. This study investigated the role of miR-379 on proliferation, invasion, and migration of VSMCs and explored underlying mechanisms thereof. MATERIALS AND METHODS MicroRNA, mRNA, and protein levels were determined by quantitative real-time PCR and western blot. The proliferative...

متن کامل

Mechano-sensitive transcriptional factor Egr-1 regulates insulin-like growth factor-1 receptor expression and contributes to neointima formation in vein grafts.

OBJECTIVE Vein grafts in a coronary bypass or a hemodialysis access often develop obliterative growth of the neointima. We previously reported that the mechanical stretch-activated insulin-like growth factor-1 receptor (IGF-1/IGF-1R) pathway plays an important role in this remodeling. However, the transcriptional mechanism(s) regulating IGF-1R expression and neointima formation have not been id...

متن کامل

MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23

Objective(s): Vascular calcification is one the major characteristics in patients with various types of chronic inflammatory disorders. MiRNAs have been shown to be involved in many normal biological functions as well as diseases; however, their role in vascular calcification has not received much attention. Materials and Methods: In the current study, we built a vascular calcification rat mode...

متن کامل

Serum response factor regulates expression of phosphatase and tensin homolog through a microRNA network in vascular smooth muscle cells.

OBJECTIVE Serum response factor (SRF) is a critical transcription factor in smooth muscle cells (SMCs) controlling differentiation and proliferation. Our previous work demonstrated that depleting SRF in cultured SMCs decreased expression of SMC markers but increased proliferation and inflammatory mediators. A similar phenotype has been observed in SMCs silenced for phosphatase and tensin homolo...

متن کامل

Promotion of apoptosis does not necessarily mean inhibition of remodeling.

Promotion of Apoptosis Does Not Necessarily Mean Inhibition of Remodeling To the Editor: Hypoxic pulmonary hypertension is a serious disease characterized by hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. In the article “The MicroRNA-328 Regulates Hypoxic Pulmonary Hypertension by Targeting at Insulin Growth Factor 1 Receptor and l-Type Calcium Channel-1C,” the authors ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2015